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Abstract
A general calculation of Casimir energies—in an arbitrary number of
dimensions—for massless quantized fields in spherically symmetric cavities
is carried out. All the most common situations, including scalar and spinor
fields, the electromagnetic field and various boundary conditions are treated
with the uppermost accuracy. The final results are given as analytical, closed
expressions in terms of Barnes zeta functions. A direct numerical evaluation
of the formulae is then performed, which yields highly accurate numbers of, in
principle, arbitrarily good precision.

PACS numbers: 12.38.−t, 02.10.De, 12.20.−m

1. Introduction

Calculations of Casimir energies in spherically symmetric situations have attracted the interest
of physicists for well over 30 years now. Since the calculation of Boyer [1], who computed
the Casimir energy for a conducting spherical shell and found, to his surprise, a repulsive
force, many different situations in the spherically symmetric context have been considered.
For example, dielectrics were included [2] (for the case of plane, parallel surfaces see [3]) and
used later for possible explanations of sonoluminescence [4–8]. Moreover, enormous interest
has been attracted by the MIT bag model in QCD [9–20] and, also, the influence of different
boundary conditions has been considered in detail [21–23].
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Different methods have been used for dealing with the Casimir effect. Whereas in earlier
times the Green function formalism was preferred, in recent years different approaches—which
make use of contour integral representations of the involved spectral sums—are commonplace.
Although the idea for this method, in the specific context of Casimir energies, goes back to the
early days of the subject [24], a systematical, effective and simple application of this approach
in various contexts has only recently been achieved [21–28].

The spectral sum which actually appears in the calculation depends on the regularization
used and may include a cutoff function, to dampen high-frequency contributions [28] or, as in
the zeta regularization technique [29], complex powers of the eigenvalues [21,22,26,30]. As a
result, the details of the computation may differ slightly, for example in the specific integration
contour chosen, but all of them share the elegance of this method.

In recent contributions we have further developed the zeta function technique, in
combination with several contour integral representations. Given the deep connections among
zeta functions, heat kernels and functional determinants [31–34], one advantage of the method
is that it can be applied, alternatively, to the calculation of heat kernel coefficients [26] and
functional determinants [27,30] (see also [35,36]), as well as Casimir energies [20–22]. This
clearly shows that zeta functions serve as a unified framework in different areas of interest.

Here we want to pursue this idea, by using the zeta function framework in a precise analysis
of the Casimir energy as a function of the dimension of space. Previously it had been shown
that arbitrary space dimension can be treated elegantly by making use of Barnes zeta functions,
where the dimension can be considered as a parameter [27, 37]. This has been applied to the
calculation of heat-kernel coefficients and determinants and it will be here used to study the
Casimir energy. Apart from dealing with arbitrary dimensions, we will introduce scalars,
spinor fields and the electromagnetic field in a unified way, including the effects different sets
of boundary conditions have on them. In spirit, our analysis is to be compared with that of
Ambjørn and Wolfram in [38], with the difference that the role of the Epstein zeta function
there is here played by the Barnes zeta function. For a recent analysis on the dimensional
dependence of the Casimir energy for scalar fields with Dirichlet boundary conditions and
the electromagnetic field in the presence of a spherical shell see [39, 40], where the space
dimension D has been dealt with as a parameter, and results for (in principle) all values of real
D have been obtained.

The paper is organized as follows. In the next section we briefly recall the definition of
Casimir energies in terms of zeta functions. In section 3, we shortly describe the method
and derive the formulae that are subsequently needed in the context of Casimir energy
calculations [26, 27]. In section 4 we consider the case of a scalar field. For Dirichlet
boundary conditions, the energy in dimensions D = 2 up to 9 is given there. The interior and
the exterior regions are treated separately. Afterwards, the changes in the procedure needed
for Robin boundary conditions are explained, and the corresponding formulae are derived.
Given that the Casimir energy of the electromagnetic field is determined by using the Casimir
energy of a scalar field satisfying Dirichlet boundary conditions (TE modes) and a scalar field
satisfying Robin boundary conditions (TM modes), these forms constitute the basis for the
electromagnetic case, and nothing else needs to be calculated, as will be later described in
detail (section 6). Before that, section 5 is devoted to the spinor field. Local bag boundary
conditions, as well as global spectral boundary conditions, are considered. In the concluding
section 7, a summary of our main results, as well as details on how our method is indeed able
to yield arbitrary accurate results, are given.
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2. The Casimir energy

The Casimir energy of a quantum field �(t, �x) inside a spherical shell is formally given by

ECas = 1
2

∑
k

ωk (2.1)

(we set h̄ = c = 1) with the one-particle energies ωk = √
λk being obtained from

−�φk(�x) = λkφk(�x) (2.2)

also fulfilling suitable boundary conditions. The field operator is, in our case, A = ∂2
t − �,

and we have �(t, �x) = e−iωtφ(�x). The Laplacian � is that defined inside or outside the
D = (d + 1)-dimensional ball BD = {�x ∈ R

D‖�x‖ � R} and the fields φ(�x) must satisfy
appropriate boundary conditions at ‖�x‖ = R.

The Casimir energy as given by the formal expression (2.1) is ill defined and has to be
regularized. In the ζ -function regularization procedure, one writes

ECas = 1
2µ

2sζ(s − 1/2)|s=0 (2.3)

ζ(s) =
∑
λk 
=0

λ−s
k . (2.4)

Here, µ is an arbitrary parameter with dimensions of mass to yield the correct dimension for
all values of s, and ζ(s) is the ζ -function corresponding to the operator A. In some cases, ECas

will be divergent and, as is known and will be seen later on, renormalization ambiguities may
remain.

In order to calculate ECas according to the previous definition, we need information on
the zeta function ζ(s) in a neighbourhood of s = −1/2. As we are dealing with operators
in flat space, but satisfying boundary conditions on a d-dimensional sphere (d = D − 1, the
boundary of the D-dimensional ball), the eigenvalues will be implicitly given as the zeros of
a polynomial P̃ (Z̃ν, Z̃

′
ν) involving Bessel or Hankel functions, according to whether one is

considering the internal or the external domain, respectively. We will denote the associated
zeta functions by ζ int(s) and ζ ext(s). The total Casimir energy will be the sum of the two terms,
that is

ECas = 1
2µ

2s
[
ζ int(s − 1/2) + ζ ext(s − 1/2)

]∣∣
s=0. (2.5)

With just a few modifications, which involve the phase of the zeta function (see [41] for precise
details), all the considerations above can be extended to the Dirac operator. The basic construct
turns out to be the zeta function of the square of the Dirac operator and one encounters a minus
sign in equation (2.3).

3. The method

The method to be used here has been developed in the seminal papers [21,26,27] and permits
us to compute the ζ -function starting from the (indirect) knowledge of the eigenvalues through
an implicit relation of the kind

P̃ (Z̃νl (ωnlR), Z̃
′
νl
(ωnlR)) = 0 λnl = ω2

nl (3.1)

where n, l � 0 are the principal and azimuthal quantum numbers respectively. The degeneracy
d(l)of the eigenvalues and the indexνl of the Bessel functions depend on l and on the dimension.
Their explicit forms are strictly related to the fields and the boundary conditions.

The ζ -function can be expressed as an integral in the complex plane, that is

ζ(s) =
∑
l

d(l)

2π i

∫
γ

k−2s ∂

∂k
ln k−bνl P̃ (Z̃νl (k), Z̃

′
νl
(k)) dk Re s >

D

2
(3.2)
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where the open contour γ has to be chosen to run counterclockwise and to enclose all strictly
positive solutions of equation (3.1). The additional factor k−bνl has been inserted in order to
cancel the pole at the origin, which is important when deforming the contour in the next step.
In this way γ can also include the origin. Here b is a number which depends on the asymptotic
behaviour of P̃ at the origin: in our cases it will be ±1 for scalars, but for spin- 1

2 with mixed
boundary conditions it turns out to be ±2.

For explicit calculation, it is convenient to write equation (3.2) as an integral on the real
axis. This can be done by deforming the contour γ to the imaginary axis and by making the
substitution k → iy. In general one has to be careful when deforming the contour that no
poles in the plane Re k � 0 are hit. In fact, for Robin boundary conditions one has

P̃ (Z̃ν, Z̃
′
ν) = αZ̃ν(k) + kZ̃′

ν(k) = (α − ν)Z̃ν(k) + kZ̃ν−1(k) = 0 (3.3)

which may have solutions for k /∈ R too, if α > ν. To avoid these cases, in the following we
will consider α � ν0 only, ν0 corresponding to the smallest eigenvalue.

With this assumption we can write the ζ -function in the simpler form

ζ(s) = sin πs

π

∞∑
l=0

d(l)

∫ ∞

0
y−2s ∂

∂y
ln[y−bνlP (νl, y)] dy (3.4)

which is valid for 1/2 < Re s < 1 (for details see [26]). Here, P(ν, y) = P(Zν(y), Z
′
ν(y))

is a polynomial like P̃ (aside, possibly, from an irrelevant sign) and the Zν(y) = Z̃ν(iy) are
the modified Bessel functions corresponding to Z̃. In order to compute the Casimir energy
we need the ζ -function at s = −1/2 and so we have to make an analytic continuation of
equation (3.4).

With this aim, let us now employ the asymptotic expansion of the modified Bessel
functions. For large values of ν, we have [42]

Iν(νz) ∼ 1√
2πν

eνη

(1 + z2)
1
4

)1 )1 =
∞∑
k=0

uk

νk
(3.5)

I ′
ν(νz) ∼ 1√

2πν

eνη(1 + z2)
1
4

z
)2 )2 =

∞∑
k=0

vk

νk
(3.6)

Kν(νz) ∼
√

π

2ν

e−νη

(1 + z2)
1
4

)3 )3 =
∞∑
k=0

(−1)k
uk

νk
(3.7)

K ′
ν(νz) ∼ −

√
π

2ν

e−νη(1 + z2)
1
4

z
)4 )4 =

∞∑
k=0

(−1)k
vk

νk
(3.8)

where η = √
1 + z2 +ln[z/(1+

√
1 + z2)]. The first few coefficients uk and vk are listed in [42],

while higher-order coefficients are immediate to obtain by using the recursion relations

uk+1(t) = 1
2 t

2(1 − t2)u′
k(t) + 1

8

∫ t

0
(1 − 5τ 2)uk(τ ) dτ (3.9)

vk+1(t) = uk+1(t) − 1
2 t (1 − t2)uk(t) − t2(1 − t2)u′

k(t) (3.10)

t = 1√
1 + z2

z =
√

1 − t2

t
. (3.11)

As we shall see explicitly in the following, the above behaviour of Bessel functions permits
us to write

lnP(ν, zν) ∼ lnF(ν, z) +
N∑
n=1

Dn(t)

νn
(3.12)
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an expression which is valid for large values of ν. The function F is related to the exponential
factors in equations (3.5)–(3.8), while the coefficients Dn(t) are related to )k and are
polynomials in t . More precisely

Dn(t) =
2n∑
k=0

xnkt
n+k. (3.13)

Note that when b = ±1, all xnk with odd k vanish. Of course, F , Dn and xnk depend on the
specific problem under consideration. We will specialize them for every case.

The trick consists now in subtracting the asymptotic behaviour from the integrand function
and in integrating the asymptotic part, with arbitrary s, exactly. We thus obtain

ζ(s) = Z0(s) + Z(s) +
N∑

n=−1

An(s). (3.14)

Here,

Z0(s) = δ(D − 2)d[0]
sin(πs)

π

∫ ∞

0
dz z−2s ∂

∂z
lnP(0, z) (3.15)

is the contribution due to νl = 0, which is present only in two dimensions and has to be treated
specifically for any case. Z(s) represents all the other terms with the asymptotic contributions
subtracted, that is

Z(s) = sin(πs)

π

∑
νl>0

d(l)

∫ ∞

0
dz (zν)−2s ∂

∂z

{
lnP(νl, zνl) − lnF(νl, z) −

N∑
n=1

Dn(t)

νnl

}

(3.16)

and An are the integrals of the asymptotic part. They read [27]

An(s) = − 1

1(s)
ζN (s + n/2)

2n∑
k=0

xnk
1(s + n+k

2 )

1(n+k
2 )

n � 1 (3.17)

A−1 + A0 = sin(πs)

π

∑
νl>0

d(l)

∫ ∞

0
dz (zνl)

−2s ∂

∂z
ln[(zνl)

−bνlF (νl, z)]

= c−1(s)ζN (s − 1/2) + c0(s)ζN (s) (3.18)

ζN (s) =
∑
νl>0

d(l)ν−2s
l . (3.19)

Equation (3.16) is convergent for (D−2−N)/2 < Re s < 1, thus for our aim it is sufficient to
subtractN = D asymptotic terms. This means that withN = D we can directly put s = −1/2
in equation (3.16) and perform the integral numerically.

As we shall see in the explicit examples, the base ζ -function, ζN , can be conveniently
expressed in terms of the Barnes zeta function [44], defined as [45]

ζB(s, a; d) =
∞∑
�m=0

1

(a + m1 + · · · + md)s
=

∞∑
n=0

en(d)(a + n)−s

en(d) = (d + n − 1)!

n!(d − 1)!

for Re s > d. Obviously, there is an expansion of the kind

en(d) =
d−1∑
α=0

gα(d)(a + n)α
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and this yields the expansion of the Barnes zeta function in terms of Hurwitz zeta
functions [45, 46]

ζB(s, a; d) =
d−1∑
α=0

gα(d)ζH (s − α, a). (3.20)

For example, for d = 2, we trivially obtain

ζB(s, a; 2) = ζH (s − 1, a) + (1 − a)ζH (s, a).

One can show that the gα(d) are connected with the generalized Bernoulli polynomials [47].
This allows us to determine, in a direct way, the residues and finite parts of the Barnes zeta
function of the problem at hand. As a result, the asymptotic contributions in (3.14) are readily
computed.

4. The scalar field

The field equation for this case reads

−�φk(�x) = λkφk(�x) (4.1)

and has to be supplemented with Dirichlet or Robin boundary conditions. Here, � is the
Laplace operator inside or outside the D = (d + 1)-dimensional ball and we impose Dirichlet
(φ(�x)||�x|=R = 0) or Robin ([αφ(�x)| + φ′(�x)]||�x|=R = 0) boundary conditions.

In polar coordinates the solutions are

φl,m,n(r,8) = r1−D/2fν1(ωl,nr)Yl+D/2(8)

with νl = l + (D − 2)/2, the fν(r) being Bessel functions and the Yl+D/2(8) hyperspherical
harmonics [43].

4.1. Scalar field with Dirichlet boundary conditions inside a spherical shell

In this case, the fν are Bessel functions of the first kind and thus the eigenvalues λl,n = ω2
l,n

are defined through

Jνl (ωl,nR) = 0

and have degeneracies given by d(l) = (2l + d − 1) (l+d−2)!
l!(d−1)! . From the last equation, it easily

follows that [27, 44]

ζN = ζB

(
2s,

d + 1

2
; d

)
+ ζB

(
2s,

d − 1

2
; d

)
. (4.2)

In this case,

P̃ (Z̃ν(k), Z̃
′
ν(k)) = Jν(k) P (ν, z) = Iν(z) (4.3)

and, as a consequence,

F(ν, z) = 1√
2πν

eνη

(1 + z2)
1
4

(4.4)

ln)1 ∼
∞∑
n=1

Dn(t)

νn
. (4.5)

The asymptotic contributions have been calculated to be [27]

A−1(s) = 1

4
√
π

1
(
s − 1

2

)
1(s + 1)

ζN (s − 1/2)

A0(s) = − 1
4 ζN (s).

(4.6)
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The ζ -function for the present situation is obtained by means of equations (3.13)–(3.17) with
the definitions above.

As already anticipated in the previous section, in two dimensions we have an aditional
contribution that has to be computed explicitly. With this aim, we recall that, for large z,

I0(z) = ez√
2πz

{
1 +

1

8z
+ O(

z−2
)}

and thus we can write

Z0(s) = sin(πs)

π

{ ∫ 1

0
dz z−2s ∂

∂z
ln I0(z) +

∫ ∞

1
dz z−2s

[
∂

∂z
ln I0(z) − 1 +

1

2z
+

1

8z2

]

− 1

4s
+

1

2(s − 1/2)
− 1

16(s + 1/2)

}
(4.7)

where the poles at s = ±1/2 are shown explicitly. The integrals are now convergent for
s = −1/2 and can be computed numerically.

4.2. Scalar field with Dirichlet boundary conditions outside a spherical shell

Now the radial parts of the solutions are Bessel functions of the third kind (Hankel functions),
while νl and d(l) remain the same. Thus, we have

νl = l +
D − 2

2
(4.8)

d(l) = (2l + d − 1)
(l + d − 2)!

l!(d − 1)!
(4.9)

ζN = ζB

(
2s,

d + 1

2
; d

)
+ ζB

(
2s,

d − 1

2
; d

)
(4.10)

P(ν, z) = Kν(z) (4.11)

F(ν, z) =
√

π

2ν

e−νη

(1 + z2)
1
4

(4.12)

ln)3 ∼
∞∑
n=1

Dn(t)

νn
(4.13)

A−1(s) = − 1

4
√
π

1
(
s − 1

2

)
1(s + 1)

ζN (s − 1/2) (4.14)

A0(s) = − 1
4 ζN (s). (4.15)

Owing to the particular relation between )1 and )3, the coefficients Dn(t) differ from the
corresponding coefficients one has in the internal case just in the trivial factor (−1)n. The
same holds also for the quantities An(s).

In two dimensions we have to also consider the contribution due to ν = 0, which can be
obtained with the same arguments as in the previous case, equation (4.7). The result is

Z0(s) = sin(πs)

π

{ ∫ 1

0
dz z−2s ∂

∂z
lnK0(z) +

∫ ∞

1
dz z−2s

[
∂

∂z
lnK0(z) + 1 +

1

2z
− 1

8z2

]

− 1

4s
− 1

2(s − 1/2)
+

1

16(s + 1/2)

}
. (4.16)

The numerical results corresponding to the ζ -functions inside and outside the shell and the
total Casimir energy are reported in table 1 for the choices D = 2, . . . , 9. For the interior
space for D = 2 and 3 as well as for D = 3 and the exterior space, our results agree with [22].
For the whole space in D = 3 the result is given in [23, 39].
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Table 1. Scalar field with Dirichlet boundary conditions. Values of the zeta function at s = −1/2,
for the inside and the outside regions of a spherical shell, and values of the Casimir energy. The
presence of the cutoff ε for all even dimensions is to be noted. In such cases, the Casimir energy
is divergent and needs to be renormalized.

D ζ(−1/2) inside ζ(−1/2) outside Casimir energy

2 +0.009 8540 − 0.003 9062/ε −0.008 4955 − 0.003 9062/ε +0.000 6793 − 0.003 9062/ε
3 +0.008 8920 + 0.001 0105/ε −0.003 2585 − 0.001 0105/ε +0.002 8168
4 −0.001 7939 + 0.000 2670/ε +0.000 4544 + 0.000 2670/ε −0.000 6698 + 0.000 2670/ε
5 −0.000 9450 − 0.000 1343/ε +0.000 3739 + 0.000 1343/ε −0.000 2856
6 +0.000 2699 − 0.000 0335/ε −0.000 0611 − 0.000 0335/ε +0.000 1044 − 0.000 0335/ε
7 +0.000 1371 + 0.000 0214/ε −0.000 0555 − 0.000 0214/ε +0.000 040 8
8 −0.000 0457 + 5.228 × 10−6/ε +0.000 0101 + 5.228 × 10−6/ε −0.000 0178 + 5.228 × 10−6/ε

9 −0.000 0230 − 3.769 × 10−6/ε +0.000 0094 + 3.769 × 10−6/ε −0.000 0068

4.3. Scalar field with Robin boundary conditions inside a spherical shell

In the case of Robin boundary conditions the radial part of the solution is a combination of
Bessel functions with derivatives. For the interior case we have Bessel functions of the first
kind and their eigenvalues are determined through(

1 − D

2
− β

)
Jνl (ωl,n) + ωl,nJ

′
νl
(ωl,n) = 0. (4.17)

Here we have put α = 1 −D/2 −β and, in the spirit of section 3, we have to restrict ourselves
to the case β � 1 − D/2 − ν0. The choice β = 0 represents Neumann boundary conditions.

Also for this case νl , d(l) and ζN are given by equations (4.8)–(4.10), now with

P(ν, z) =
(

1 − D

2
− β

)
Iν(z) + zI ′

ν(z)

F (ν, z) =
√

ν

2π
eνη(1 + z2)

1
4

ln

(
1 − D/2 − β

ν
t)1 + )2

)
∼

∞∑
n=1

Dn(t)

νn

A−1(s) = 1

4
√
π

1
(
s − 1

2

)
1(s + 1)

ζN (s − 1/2)

A0(s) = 1
4 ζN (s).

In two dimensions we have to consider also the contribution

Z0(s) = sin(πs)

π

{ ∫ 1

0
dz z−2s ∂

∂z
ln(αI0(z) + zI ′

0(z))

+
∫ ∞

1
dz z−2s

[
∂

∂z
ln(αI0(z) + zI ′

0(z)) − 1 − 1

2z
−

(
3

8
− α

)
1

z2

]

+
1

4s
+

1

2(s − 1/2)
+

(
3

8
− α

)
1

2(s + 1/2)

}
.

4.4. Scalar field with Robin boundary conditions outside the spherical shell

As for Dirichlet, the only difference between the interior and the exterior case consists in the
replacement of Bessel functions with Hankel functions. Equations (4.8)–(4.10) are valid again,
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Table 2. Scalar field with Neumann boundary conditions (or Robin with the choice β = 0). Values
of the zeta function at s = −1/2, for the inside and the outside regions of a spherical shell, and
corresponding values of the Casimir energy.

D ζ(−1/2) inside ζ(−1/2) outside Casimir energy

2 −0.344 6767 − 0.019 5312/ε −0.021 5672 − 0.019 5312/ε −0.183 1220 − 0.019 5312/ε
3 −0.459 7174 − 0.035 3678/ε +0.012 0743 + 0.035 3678/ε −0.223 8215
4 −0.515 3790 − 0.044 7159/ε −0.006 0394 − 0.044 7159/ε −0.260 7092 − 0.044 7159/ε
5 −0.555 2071 − 0.048 9213/ε +0.003 0479 + 0.048 9213/ε −0.276 0796
6 −0.594 9395 − 0.051 3727/ε −0.012 8321 − 0.051 3727/ε −0.303 8858 − 0.051 3727/ε

while

P(ν, z) =
(

1 − D

2
− β

)
Kν(z) + zK ′

ν(z)

F (ν, z) =
√
πν

2
e−νη(1 + z2)

1
4

ln

(
1 − D/2 − β

ν
t)3 − )4

)
∼

∞∑
n=1

Dn(t)

νn

A−1(s) = − 1

4
√
π

1
(
s − 1

2

)
1(s + 1)

ζN (s − 1/2)

A0(s) = 1
4 ζN (s).

For the ν = 0 contribution, we have in this case

Z0(s) = sin(πs)

π

{ ∫ 1

0
dz z−2s ∂

∂z
ln(αK0(z) + zK ′

0(z))

+
∫ ∞

1
dz z−2s

[
∂

∂z
ln(αK0(z) + zK ′

0(z)) + 1 − 1

2z
+

(
3

8
− α

)
1

z2

]

+
1

4s
− 1

2(s − 1/2)
−

(
3

8
− α

)
1

2(s + 1/2)

}
.

All numerical results corresponding to Neumann boundary conditions (or Robin ones with
β = 0) are exhibited in table 2. For D = 2 the result is given in [22], for D = 3 in [23].

5. Spinor field on the D-dimensional ball: bag boundary conditions

We now consider spinor fields, see [37, 48]. The eigenvalue Dirac equation on the Euclidean
D-ball is

−i1µ∇µψ± = ±kψ± 1(µ1ν) = gµν (5.1)

and the nonzero modes are separated in polar coordinates, ds2 = dr2 + r2 d82, in standard
fashion to be regular at the origin (C and A are radial normalization factors),

ψ
(+)
± = A

r(D−2)/2

(
iJn+D/2(kr) Z

(n)
+ (8)

±Jn+D/2−1(kr) Z
(n)
+ (8)

)

ψ
(−)
± = C

r(D−2)/2

( ±Jn+D/2−1(kr) Z
(n)
− (8)

iJn+D/2(kr) Z
(n)
− (8)

)
.

(5.2)
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Here the Z
(n)
± (8) are well known spinor modes on the unit (D − 1)-sphere (some modern

references are [49–51]) satisfying the intrinsic equation

−iγ j ∇̃jZ
(n)
± = ±λnZ

(n)
± (5.3)

where

λn = n +
D − 1

2
n = 0, 1, . . . .

For D � 2, each eigenvalue is greater than or equal to one-half and has degeneracy

1
2ds

(
D + n − 2

n

)
.

The dimension, ds, of ψ-spinor space is 2D/2 if D is even. For odd D it is 2(D+1)/2 and has
been doubled in order to implement the boundary conditions. The projected γ -matrices are
given by

1r =
(

0 1
1 0

)
1j =

(
0 iγ j

−iγ j 0

)
15 =

(
1 0
0 −1

)
. (5.4)

5.1. Spinor field inside a spherical shell: bag boundary conditions

For bag—also called mixed—boundary conditions, we apply P+ψ = 0 at r = 1, where the
projection is given by

P+ = 1
2

(
1 − i151µ nµ

)
(5.5)

in terms of the inward normal nµ. For the geometry of the ball

P+ = 1
2

(
1 i1

−i1 1

)

and so for ψ(+)
± ,

Jn+D/2(k) = ∓Jn+D/2−1(k)

and for ψ(−)
± ,

Jn+D/2−1(k) = ∓Jn+D/2(k) n = 0, 1, 2, . . . .

Thus, taking νn = n + (D − 2)/2, the implicit eigenvalue equation is as in [52]

J 2
ν (k) − J 2

ν+1(k) = 0 (5.6)

while the degeneracies are

d(n) = ds

(
D + n − 2
D − 2

)
. (5.7)

In two dimensions the degeneracy is just two.
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In summary, all the relevant functions for this case are

νn = n +
D − 2

2

d(n) = ds
(n + D − 2)!

n!(D − 2)!
d(n) = 2 for D = 2

ζN (s) = dsζB(2s,D/2 − 1; d) ζN (s) = 2ζR(2s) for D = 2
P(ν, z) = I 2

ν (z) + I 2
ν+1(z)

F (ν, z) = (1 − t)e2νη(1 + z2)
1
2

πνz2

ln

(
1

2(1 − t)

[
)2

1 + )2
2 − 2t)1)2

]) ∼
∞∑
n=1

Dn(t)

νn

A−1(s) = 1

2
√
π

1
(
s − 1

2

)
1(s + 1)

ζN (s − 1/2)

A0(s) = − 1

2
√
π

1
(
s + 1

2

)
1(s + 1)

ζN (s)

(5.8)

with ζR the Riemann ζ -function.
The contribution of ν = 0, which we have in two dimensions, reads here

Z0(s) = sin(πs)d[0]

π

{ ∫ 1

0
dz z−2s ∂

∂z
ln(I 2

0 (z) + I 2
1 (z))

+
∫ ∞

1
dz z−2s

[
∂

∂z
ln(I 2

0 (z) + I 2
1 (z)) − 2 +

1

z
− 1

4z2

]

− 1

2s
+

1

(s − 1/2)
+

1

8(s + 1/2)

}
.

5.2. Spinor field outside a spherical shell: bag boundary conditions

As in the scalar cases, we must simply replace Bessel with Hankel functions. Equations (5.8)
and (5.9) provide some quantities needed in the computation, while for the rest we obtain

P(ν, z) = K2
ν (z) + K2

ν+1(z)

F (ν, z) = 4ν(1 + t)e−2νη(1 + z2)
1
2

πz2

ln

(
1

2(1 + t)

[
)2

3 + )2
4 + 2t)3)4

]) ∼
∞∑
n=1

Dn(t)

νn

A−1(s) = − 1

2
√
π

1
(
s − 1

2

)
1(s + 1)

ζN (s − 1/2)

A0(s) = 1

2
√
π

1
(
s + 1

2

)
1(s + 1)

ζN (s).

In the same way, for ν = 0 we obtain

Z0(s) = sin(πs)d[0]

π

{ ∫ 1

0
dz z−2s ∂

∂z
ln

(
K2

0 (z) + K2
1 (z)

)
+

∫ ∞

1
dz z−2s

[
∂

∂z
ln

(
K2

0 (z) + K2
1 (z)

)
+ 2 +

1

z
+

1

4z2

]

− 1

2s
− 1

(s − 1/2)
− 1

8(s + 1/2)

}
.
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Table 3. Massless spinor field with mixed boundary conditions. Values of the zeta function at
s = −1/2, for the inside and the outside regions of a spherical shell, and values of the Casimir
energy.

D ζ(−1/2) inside ζ(−1/2) outside Casimir energy

2 −0.005 8312 + 0.007 8125/ε +0.021 3677 + 0.007 8125/ε −0.007 7683 − 0.007 8125/ε
3 −0.060 5944 − 0.005 0525/ε +0.019 8217 + 0.005 0525/ε +0.020 3863
4 +0.005 9074 − 0.002 8381/ε −0.010 1965 − 0.002 8381/ε +0.002 1445 + 0.002 8381/ε
5 +0.025 0447 + 0.002 5110/ε −0.008 9912 − 0.002 5110/ε −0.008 0268
6 −0.003 0244 + 0.001 1715/ε +0.004 6183 + 0.001 1715/ε −0.000 7969 − 0.001 1715/ε
7 −0.010 8618 − 0.001 1745/ε +0.004 0247 + 0.001 1745/ε +0.003 4186

The numerical results for spin 1/2 with bag boundary conditions are given in table 3. The
D = 3 result is that found already by Milton [15] (albeit with far less precision).

5.3. Spinor field with global spectral boundary conditions

We shall now obtain the results for spectral boundary conditions [37, 48]. Such boundary
conditions are imposed by setting equal to zero, at r = 1, the negative (positive) Z-modes of
the positive (negative) chirality parts of ψ , the rest of the modes remaining free.

Roughly speaking, spectral conditions amount to requiring that zero modes of (5.1) should
be square integrable on the elongated manifold obtained from the ball by extending the narrow
collar (of the approximate product metric dr2 + d82) just inside the surface, to values of r
ranging from 1 to ∞. This will be so if the modes of A = 1r1a∇a with negative eigenvalues
are suppressed at the boundary (e.g. [53–61]).

From (5.4) and (5.3), the boundary operator is A0 = 1r1a∇a

∣∣
r=1 and has for eigenstates

A0

(
Z

(n)
+

Z
(n)
−

)
= λn

(
Z

(n)
+

Z
(n)
−

)
A0

(
Z

(n)
−

Z
(n)
+

)
= −λn

(
Z

(n)
−

Z
(n)
+

)
. (5.9)

Thus, from (5.2) we see that the negative modes of A0 are associated with the radial factor
Jn+D/2−1(kr). Taking ν as before, ν = n + (D − 2)/2, the implicit eigenvalue equation reads

Jν(k) = 0.

The degeneracy for each eigenvalue is

d(n) = 2ds

(
n + D − 2
D − 2

)
d(n) = 4 for D = 2. (5.10)

The relevant boundary zeta function now reads

ζN (s) = 2dsζB(2s,D/2 − 1; d) ζN (s) = 4ζR(2s) for D = 2. (5.11)

As we see, apart from the degeneracy of the eigenvalues and the relation between ζN and
the Barnes ζ -function, the rest of the argumentation is identical to that for the scalar case
with Dirichlet boundary conditions. Thus, equations (4.3)–(4.7) remain valid once the above
definitions are used.

For the exterior space we have to employ equations (5.10) and (5.11) in equations (4.11)–
(4.16), but it has to be noted that here, in contrast with the interior case, νl = l + D/2, as a
result of the normal vector changing its sign. This means that there is no νl = 0 contribution.

The numerical results for this case are listed in table 4, for D = 2, . . . , 9.
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Table 4. Massless spinor field with global spectral boundary conditions. Values of the zeta function
at s = −1/2, for the inside and the outside regions of a spherical shell, and corresponding values
of the Casimir energy.

D ζ(−1/2) inside ζ(−1/2) outside Casimir energy

2 −0.009 3152 + 0.031 9762/ε +0.010 0172 + 0.031 9762/ε −0.000 3510 − 0.031 9762/ε
3 −0.171 0212 − 0.003 7705/ε +0.001 9763 + 0.003 7705/ε +0.084 5225
4 +0.008 2635 − 0.011 8316/ε −0.004 0473 − 0.011 8316/ε −0.002 1081 + 0.0118 316/ε
5 +0.068 0217 + 0.001 9471/ε −0.000 9007 − 0.001 9471/ε +0.033 5605
6 −0.004 2224 + 0.004 9069/ε +0.001 7603 + 0.004 9069/ε +0.001 2311 − 0.004 9069/ε
7 −0.029 0717 − 0.000 9256/ε +0.000 3983 + 0.000 9256/ε +0.014 3367
8 +0.002 0298 − 0.002 1417/ε −0.000 7907 − 0.002 1417/ε −0.000 6196 + 0.002 1417/ε
9 +0.012 8994 + 0.000 4353/ε −0.000 1787 − 0.000 4353/ε −0.006 3604

Table 5. Electromagnetic field in a perfectly conducting spherical shell. Values of the zeta function
at s = −1/2, for the inside and the outside regions of a spherical shell, and corresponding values of
the Casimir energy. Note that in even dimensions, in contrast with the scalar field, the divergences
arising from the inside and the outside energies are different. This is due to the fact that (only
in even dimensions) the l = 0 mode explicitly contributes to the poles of the ζ -function, such
contribution being absent from the scalar case.

D ζ(−1/2) inside ζ(−1/2) outside Casimir energy

2 −0.344 6767 − 0.019 5312/ε −0.021 5672 − 0.019 5312/ε −0.183 1220 − 0.019 5312/ε
3 +0.167 8471 + 0.008 0841/ε −0.075 4938 − 0.008 0841/ε +0.046 1767
4 +0.500 8593 + 0.023 1719/ε −0.194 2082 − 0.056 4056/ε +0.153 3255 − 0.033 2337/ε
5 +1.046 3255 + 0.183 8665/ε −0.298 1425 − 0.183 8665/ε +0.374 0915

6. Electromagnetic field in a perfectly conducting spherical shell

The Casimir energy of the electromagnetic field is, essentially, the sum of a Dirichlet and of a
Robin scalar field (with a specific value for β, see equation (4.17)), the only difference being
that the angular momentum l = 0 is to be omitted. An exception is D = 2, where the vector
Casimir effect consists of only the transverse magnetic mode contributions. Being precise, in
the interior of the shell one has for the transverse electric (TE)—respectively for the transverse
magnetic (TM) modes—the following boundary conditions [1, 62]:

r1−D/2Jνl (ωl,nr)|r=R = 0 for TE modes[
(D/2 − 1)Jνl (ωl,nr) + ωl,nJ

′
νl
(ωl,nr)

] |r=R = 0 for TM modes.
(6.1)

The condition for the TM modes is of Robin type with β = 2 −D. Since the l = 0 mode has
to be omitted, the minimum eigenvalue in this case is µ1 = D/2 and therefore we can apply
the method for any β = 2 − D > 1 − D. Thus, in order to obtain the Casimir energy of the
electromagnetic field, we must simply repeat the computation of section 4 for Dirichlet and
Robin boundary conditions with β = 2−D and add them up. We have to exclude everywhere
the l = 0 mode and this means that also the base ζ -function is slightly modified, in the way

ζN (s) = ζB

(
2s,

d + 1

2
; d

)
+ ζB

(
2s,

d − 1

2
; d

)
−

(
d − 1

2

)−2s

. (6.2)

The results for the electromagnetic field are summarized in table 5. D = 2 is the Neumann
result, D = 3 is the well known figure first obtained by Boyer [1] and later recalculated
in [63, 64].
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7. Discussion and conclusions

In [26], two of the present authors developed a new, seminal approach for finding
representations of the zeta function associated with the Laplace operator on the D-dimensional
ball. At that stage, dimension by dimension was considered, but soon a refined and generalized
technique was provided in subsequent works [27, 37]. Making use of the Barnes zeta
function [45], dimension can easily be dealt with as a parameter and several different fields
can also be treated on the same footing. The representations derived are valid for all values
of the complex parameter s and it depends on the practitioner’s needs or wishes at which
values of s the zeta function is to be evaluated. In previous work our concern was of a more
mathematical nature and we considered function values and residues appropriate to find heat-
kernel coefficients [26,27,37], as well as the derivative at s = 0 [30]. Since then, a number of
proclaimed ‘new’ methods have been developed in the literature.

Our aim in this paper has been to show explicitly that Casimir energies for the large family
of the more usual configurations can be obtained in fact from general formulae, also in quite
non-trivial situations, where the boundaries are not flat plates, the fields are spinorial (rather
than scalar) and also when the boundary conditions are very general and rather involved. We
have gone far beyond previous work in that here we are no longer restricted to a very specific
field in a specific dimension with a specific boundary condition, but give general formulae
for basically any possible situation that can arise in practice, involving spherically symmetric
boundaries.

Some comments on the precision and accuracy of the numerical procedure employed are in
order. It is clear from the analysis developed in the previous sections that a numerical evaluation
of the asymptotic terms Ai(s) to any desired accuracy is immediate, using the formulae given
there. These contributions are always represented by known special functions and using
available programs, such as Mathematica, the accuracy with which these are calculated is
readily obtained. Imposing accuracies of, for example, 10−20 or more, we obtain results in
negligible cpu time.

The only problem (if any) with the numerical analysis is the computation of Z(s),
equation (3.14). It is twofold. On one hand, the integration, up to infinity, of the combination
of Bessel functions is not strictly possible, using the exact form of the Bessel functions. On
the other hand, the angular summation, up to infinity, cannot be performed exactly. For large
angular momenta, the Bessel functions take a rather complicated form, which renders exact
summation not possible. For that reason, the following procedure has been applied throughout
(the error bounds given below are for Dirichlet boundary conditions, but very similar relations
hold for the other conditions considered).

We have dealt with the infinite integration as follows. The main contributions always
originate from small values of z, and thus we split the integral into∫ B

0
dz +

∫ ∞

B

dz.

Whereas in the first integral the Bessel functions themselves are used for the integration, in the
second integral their asymptotic expansion for large arguments is employed. The value of B is
computed with the help of an adaptative procedure, such that the integrand and its asymptotic
expansion differ, at B, by less than, say 10−12. Typically B = 10 is already sufficient. Given
that the asymptotic of the Bessel functions is a simple polynomial in powers of (1/z), the
integration up to infinity is very easily done.

Let us now assume that the contribution of the firstL angular momenta has been calculated
as described. In order to obtain a numerical approximation for the angular momentum sum,
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from L + 1 to infinity, we proceed as follows. The idea is that, for sufficiently large values of
L, the integrand can be replaced by its uniform asymptotic expression. For Dirichlet boundary
conditions this amounts to going through the following steps:

Zint
L+1 ≡ − 1

π

∞∑
l=L+1

d(l)ν

∫ ∞

0
dz

[
ln Iν(νz) − ln

eνη√
2πν(1 + z2)1/4

−
N∑
n=1

Dn(t)

νn

]

∼ − 1

π

[( ∫ ∞

0
dz DN+1(t)

) ∞∑
l=L+1

d(l)ν−N

+

( ∫ ∞

0
dz DN+2(t)

) ∞∑
l=L+1

d(l)ν−N−1 + · · ·
]

= − 1

π

[( ∫ ∞

0
dz DN+1(t)

)(
ζN (N/2) −

L∑
l=0

d(l)ν−N

)

+

( ∫ ∞

0
dz DN+2(t)

)(
ζN ((N + 1)/2) −

L∑
l=0

d(l)ν−N−1

)
+ · · ·

]
. (7.1)

Again, the integrals over the uniform asymptotics are simple and can be performed analytically.
In this way, a closed expression for the approximation is found, the value of L being again
determined by an adaptative procedure. By definition, the difference Zint

L − Zint
L+1 is equal to

the contribution originating from l = L. The value of L is determined such that the difference
Zint
L − Zint

L+1, obtained from (7.1), agrees up to say 10−10 with the contribution from l = L

calculated previously. Depending on the dimension, the values of L range from 6 (for D = 9)
to 49 (for D = 3).

In summary, as explained, this procedure takes fully into account the integrals of infinite
range as well as the summation up to infinity. The error bounds can thus be imposed at will in
the single steps and this guarantees that the results given are always numerically precise, up to
any pre-established digit. To our knowledge, this does not apply to any other method.

In the cases when partial results were known, we have compared our numbers with
these while improving always, by several digits, such known values and deriving, for the
first time, many new ones, for different fields (e.g. results for the exterior space in the case
of the electromagnetic field) and different boundary conditions (e.g. for spectral boundary
conditions, and for bag boundary conditions in any dimension). For the scalar field with
Dirichlet boundary conditions we have re-obtained, in particular, the known result that for
even D the energy is divergent [39]. Here it still remains unclear whether there may be a
natural way to obtain, unambiguously, a finite answer with physical sense for this case. In odd
dimension, D = 2n − 1, the sign of the Casimir energy seems to be determined by the sign
of (−1)n. For even dimension, D = 2n, one also finds the alternating structure (−1)n+1 for
the finite part of the Casimir energy; however, its interpretation is unclear due to the presence
of the pole. Similar comments hold for the interior and exterior contributions separately, with
the same problems of interpretation. For Neumann boundary conditions, in all the dimensions
calculated, the Casimir energy is negative. Similarly, one can describe the results summarized
in tables 3–5. In all cases we have been able to obtain general, highly accurate expressions,
which, by fixing some parameters, provide us with the desired specific example and yield a
numerical answer of arbitrary precision (just by adding the convenient number of terms of the
corresponding series).

Disappointing as the mentioned—quite well known—ambiguities may be (specialists in
the field are quite used to them by now), even more so is the fact that no general pattern seems
to arise from our general formulae which might hint towards the physical understanding of the
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final sign of the energy. Here we have been able to demonstrate, without reasonable doubt, the
existence of the two classes of Casimir force, attractive and repulsive, but are unable to give
the rule for which one will show up at a particular instance. Further insight will be needed to
clarify this point.
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[57] Römer H and Schroer P B 1977 Phys. Lett. 21 182
[58] Ma Z Q 1986 J. Phys. A: Math. Gen. 19 L317
[59] Mishchenko A V and Sitenko Yu A 1992 Ann. Phys., NY 218 199
[60] Niemi A J and Semenoff G W 1986 Nucl. Phys. B 269 131
[61] Gilkey P B 1975 Adv. Math. 15 334
[62] Slater J C and Frank N H 1947 Electromagnetism (New York: McGraw-Hill) p 153
[63] Milton K A, DeRaad L L Jr and Schwinger J 1978 Ann. Phys., NY 115 388
[64] Balian R and Duplantier B 1978 Ann. Phys., NY 112 165


